THE IMPACT OF ENTERAL NUTRITION ON OUTCOMES IN CRITICAL CARE

Robert G. Martindale, MD, PhD
Paul Wischmeyer, MD
Daren K. Heyland, MD

According to growing evidence, the likelihood of improving patient outcomes in the intensive care unit (ICU) can be increased by adopting a new view of the role of nutrition. With today’s advances in pharmaceuticals and the availability of clinical guidelines that set forth best practices in nutrition, intensivists are urged to change their thinking and embrace therapeutic nutrition as an essential part of care. Implementing evidence-based nutrition guidelines, such as the Canadian Clinical Practice Guidelines for Nutrition Support for the Mechanically Ventilated, Critically Ill Adult Patient and those developed by the Society of Critical Care Medicine (SCCM) and the American College of Critical Care Medicine (ACCM), is an important step toward achieving better outcomes for critically ill patients.

A Look at SCCM’s New Enteral Guidelines

Prior to discussing SCCM’s new enteral feeding guidelines, Robert G. Martindale, MD, PhD, from Oregon Health and Science University in Portland, spoke generally about clinical guidelines. “Guidelines are not absolute requirements, and they do not guarantee a specific benefit in outcome or survival,” he said. “Rather, they are basic guidelines supported by a review and analysis of all the pertinent data in the literature, other national and international guidelines, and expert opinions.”

To be effective, guidelines must be clinically practical. However, because ICU patients are a heterogeneous group, every guideline cannot be applied to every patient. This is important to emphasize when introducing new guidelines to clinicians.

Beneficial outcomes have been reported with the use of nutrition guidelines for critically ill patients. For example, results from a multicenter trial demonstrated that improved delivery of nutrients, shorter ICU length of stay, and a trend toward lower mortality were achieved when algorithms for enteral and parenteral therapy were implemented (Martin et al. Can Med Assoc J. 2004;170:197). In another prospective evaluation of outcomes, the use of an evidence-based feeding protocol resulted in a significant decrease in mortality, along with increased delivery of nutrients and shortened duration on mechanical ventilation (Bare. Crit. 2004;125:1446).

Several organizations have developed nutrition guidelines for ICU patients. In addition to SCCM, these organizations include: Critical Care Nutrition (which comprises several Canadian medical societies), the European Society for Clinical Nutrition and Metabolism (ESPEN), the American Society for Parenteral and Enteral Nutrition (ASPEN), the Australian and New Zealand Intensive Care Society; the Eastern Association for the Surgery of Trauma, and the American College of Chest Physicians. “With all these guidelines available or soon to be released, deciding which set of guidelines to follow can be problematic,” said Martindale.

Several similarities exist among these various sets of guidelines.

For example, all of them favor enteral over total parenteral nutrition (TPN), and all consider early enteral feeding (initiated within 24 to 48 hours of arrival to the ICU) to be superior to TPN. “If the patient has been in the ICU for a day or two and is nourished when he or she arrived, there’s no need to immediately begin TPN,” said Martindale. “However, enteral nutrition is not feasible for malnourished patients undergoing major gastrointestinal (GI) surgery; so we should start TPN early, rather than waiting.” All the guidelines oppose starting TPN and enteral feeding simultaneously, as it may be harmful.

There also is general agreement favoring the use of glutamine, antioxidants, fish oils in acute respiratory distress syndrome (ARDS) and acute lung injury, and probiotics. “Soluble fiber is beneficial,” Martindale explained, “but we need to be very cautious with the use of insoluble fiber in patients who have severe GI- or ICU-related dysmotility.”

None of the guidelines recommend routinely using an immune modulating formula in patients with severe sepsis, as more data are needed. However, SCCM and most of the other organizations support the use of these formulas in other ICU patients.

“In terms of target goals, we believe we need to achieve about 50% to 65% nutrient delivery, and we’d like to see the benefit within the first week of feeding initiation,” Martindale reported. “With therapeutic nutrition, at least 30% delivery of therapeutic compounds, such as protein, glutamine, arginine, or fish oils, is needed so that the feeding is therapeutic rather than supportive.”

One area of controversy among the different guidelines involves the use of probiotic supplementation, which is supported by SCCM. “In developing the SCCG guidelines, we saw there was an abundance of data demonstrating the beneficial effects of probiotics,” stated Martindale. However, he also pointed out a recent study that showed a slightly higher rate of mortality among patients with pancreatitis who received probiotics compared with those who did not.

Other comparative differences relate to the use of hypocaloric feeding in the obese and non-obese ICU patient populations. The guidelines from SCCM, the Canadian societies, and ASPEN all support relatively temporary hypocaloric nutrition in patients who are morbidly obese, but not in those of normal weight. Guidelines from other organizations do not address this issue.

In trying to determine which set of nutrition guidelines to follow, a few potential problems should be considered. First, inconsistencies exist regarding terms and definitions. Authors of the SCCM guidelines addressed this issue by adopting the same terminology used by ASPEN. Variable acceptance of guidelines by practitioners is another problem. In addition, some clinicians do not understand that these guidelines are not absolute rules or laws. “Rather, because patients are a heterogeneous group, we need to ‘message’ the guidelines occasionally,” remarked Martindale.

“What is the best way to get physicians to change their practice and implement new guidelines?” asked Martindale. He cited findings reported by Watkins that underscored the importance of linking the published evidence guidelines to everyday practice (Wats. Fam Prac. 2004;21:661). “The study also revealed that stressing cost-effectiveness was counterproductive,” he said. “Furthermore, it became apparent that clinical autonomy must be protected. Clinicians need to be able to make their own decisions. Therefore, the guidelines should be presented in a nonthreatening and non-confrontational manner.”

Education and a sense of partnership are essential to the successful implementation of clinical guidelines, emphasized Martindale. “It takes strong leadership and team acceptance.” Martindale also reiterated the need to make it clear that the guidelines are flexible and should be used based on the patient’s condition.

The Role of Specialized Enteral Nutrients in Critical Care

“Enteral nutrition therapy has every bit as much therapeutic value as other agents used in critically ill patients,” stated Paul Wischmeyer, MD, from University of Colorado Health Sciences Center in Denver.

Wischmeyer began his discussion by noting the characteristics of the ideal therapeutic agent. In addition to being clinically effective, widely applicable, associated with minimal adverse effects, and inexpensive, the ideal agent would be physiologically justifiable and supported by strong evidence. Other attributes of the ideal agent include ease in administration and the ability to be used as pretreatment to prevent disease and complications.

Therapy involving three types of pharmaceuticals—specialized fat formulas, arginine, and glutamine—illustrate how far enteral nutrition has progressed over the years. In reviewing each of these, Wischmeyer showed how they all had therapeutic effects that made mechanistic sense and that were supported by the majority of studies on clinically relevant endpoints as well as by meta-analyses. Just as important, they all showed no evidence of producing harm.

A meta-analysis of all the reported glutamine trials revealed an approximate 25% percent risk reduction in mortality rates among ICU patients who received glutamine. Glutamine also was associated with significant reductions in ICU length of stay (approximately 4.5 days). In addition, infectious complications were reduced with glutamine, although not as dramatically as they were in terms of length of stay. Parenteral administration of glutamine appears to produce better outcomes than enteral feeding.

“Given the mechanisms and effects of glutamine and the other two nutrients discussed, I propose a new paradigm for glutamine, EFAs and arginine,” said Wischmeyer. “We need to begin seeing them as more than nutrients. They actually serve as vital drugs that signal molecules within the body and, as such, these pharmacological nutrients have an important role in critical care medicine.”

Wischmeyer closed by urging clinicians to create change in the ICU by placing more emphasis on therapeutic nutrition. “I want you to challenge the old thinking that nutrition therapy is just a supportive therapy that doesn’t need much of our attention,” he said. “Demand data on nutrition therapy, and then demand change. If we could start treating diabetic patients worldwide with insulin only a year after its benefits were published, we can certainly do this with nutritional intervention.”

Implementing Nutrition Guidelines: The Canadian Experience

“Information overload is a real factor that we face in medicine in general, and in critical care medicine specifically,” said Darren K. Heyland, MD, from Kingston General Hospital Ontario. “There are scores of data related to nutrition in critical care medicine, but it’s no easy task to stay on top of it all.”

Mixed results from a variety of randomized controlled trials (RCTs) make it difficult for the individual clinician to make sense of the data. “That’s why rigorous, evidence-based guidelines are so valuable,” he continued. “They provide best practice statements that can help guide the clinician.”

Of the various levels of evidence available in the literature, systematic reviews rank at the top, providing the most unbiased data and offering the strongest inferences. The highest level comprises RCTs. Following such trials are cohort studies, case control studies and case series. Clinical practice guidelines, which are based on the best evidence available, ideally lead to improved patient outcomes when they are adopted.

Heyland shared his experiences with the development and implementation of the Canadian Clinical Practice Guidelines for Nutrition Support for the Mechanically Ventilated, Critically Ill Adult Patient. In developing the guidelines, a multiprofessional committee was formed which included physicians, registered nurses, registered dietitians, and pharmacists. The team appraised and prepared systematic reviews of the best available evidence on 34 different topics. “Since then, we’ve been validating our guidelines, and more importantly, taking steps to get these to the bedside,” said Heyland.

As a first step in validating the guidelines, a prospective observational study was conducted involving the practice patterns at 60 ICUs across Canada. “We noted that among the ICUs whose patterns were more consistent with our guidelines, better adequacy of enteral nutrition was achieved compared with ICUs that did not follow the guidelines,” said Heyland.

Bringing evidence-based knowledge to the bedside for improved outcomes is now a major focus for the Canadian guidelines. “Realizing that we needed to find ways to move practitioners from where they currently were to where they need to be, we developed a multifaceted guideline implementation strategy,” he said.

A study was conducted to evaluate different approaches to disseminating and implementing the guidelines. In a randomized cluster trial, ICUs throughout Canada were randomized to one of two methods of dissemination of the Canadian guidelines (Jain et al. Crit Care Med. 2006;34:2362). The passive method consisted of receiving a copy of the guidelines and attending a presentation at a national meeting. The active method consisted of several additional strategies, including attending interactive workshops and using various Web-based tools, such as benchmark site reports showing performances at all sites. See www.crcriticalcarenutrition.com for examples of tools and site reports. Dietitians positioned as local opinion leaders were also part of the active method. “With our Web-based tools, the idea was to make everything as automated, systemized and easy as possible.”
Heyland said.

The results of this trial showed that a 7% change from baseline in enteral nutrition adequacy (i.e., prescribed calories received) for all ICU patients (medical and surgical) was achieved by both the active and passive groups. However, among a subgroup consisting of medical ICU patients, the adequacy of enteral nutrition increased from baseline by 10% in the active group versus 1.9% in the passive group.

The groups did not obtain differences for clinical outcomes (e.g., ICU length of stay; mortality) or for nutrition support practices (e.g., type of nutrition support received, enteral feeding starting within 48 hours). “These disappointing results prompted us to try to identify the barriers and enablers to nutrition guideline adherence in the ICU,” remarked Heyland. “So we went back and did some research.”

Heyland described the results of a multiple-case study involving four ICU sites and 28 semi-structured key informant interviews with frontline clinicians and healthcare administrators (Jones et al. Nutr Clin Pract. 2007;22:44).

Identified barriers regarding the guidelines included information overload, weak evidence, and impracticality or complexity. Institutional barriers included lack of awareness, limited critical care experience, resistance to change and nursing workload. Patient barriers included poor clinical outcome and being a surgical patient (see Table 1).

The study also revealed the factors that enabled or encouraged implementation of the guidelines. “Interviewees said that when they functioned as a team and the attending physician was on board with our best practice statements, the guidelines were implemented. So, creating a sense of teamwork is intrinsic to making any type of clinical guidelines,” he reported. “Making the guidelines easy to become part of the routine practice—through preprinted orders, algorithms and protocols, which we placed on the Web site—is also a critical component to implementation.”

Another important key to implementation is having a dietitian who is knowledgeable and available to the team as a resource. In addition, interviewees said it was important to have the guidelines easily accessible and visible. “That’s why we posted them on the Web site and provided the guidelines on posters, pocket cards, and so forth,” Heyland noted. Making the guidelines easy to follow and perform enables implementation, as does providing education and open discussion opportunities.

When interviewees were asked to identify the most valuable strategies, many said informal one-on-one discussions about the guidelines were helpful. They also appreciated bedside reminders, such as checklists and algorithms. In addition, feedback and audits, as reflected in the benchmark site reports, ranked among the successful implementation strategies.

“In summary, we need to make sure our staff is educated and motivated,” Heyland said. “In Canada, we rely principally on dietitians and other key opinion leaders to make that happen. We have constant reminders in our bathrooms, on our walls and in the lunchroom to reinforce key concepts related to nutrition. We make it easy by automating the system with preprinted orders and algorithms. We constantly audit our practice so that we can clearly identify our strengths and weaknesses.

“These are all system tools that need to be applied. But with an individual patient, there needs to be accountability and responsibility every day,” he continued. “We need to ask: Is the best nutrition being practiced here? If not, why not?” He urged that someone, probably the nurse, monitor the nutrition success daily. “That would help draw attention to what needs to happen to achieve the best outcome.”

Supported by an educational grant from Ross Products, a division of Abbott Laboratories.

Table 1. Barriers and Enablers to Guideline Implementation

<table>
<thead>
<tr>
<th>Barriers:</th>
<th>Enablers:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Resistance to change</td>
<td>• Agreement of ICU team</td>
</tr>
<tr>
<td>• Lack of awareness</td>
<td>• Easy access to guidelines</td>
</tr>
<tr>
<td>• Lack of critical care experience</td>
<td>• Ease of application</td>
</tr>
<tr>
<td>• Clinical condition of patient</td>
<td>• Incorporation into daily routine</td>
</tr>
<tr>
<td>• Resource constraints</td>
<td>• Education and training</td>
</tr>
<tr>
<td>• Slow administrative process</td>
<td>• Dietician as opinion leader</td>
</tr>
<tr>
<td>• Workload</td>
<td>• Open discussion</td>
</tr>
<tr>
<td>• Numerous guidelines</td>
<td></td>
</tr>
<tr>
<td>• Complex recommendations</td>
<td></td>
</tr>
<tr>
<td>• Paucity of evidence</td>
<td></td>
</tr>
<tr>
<td>• Outdated guidelines</td>
<td></td>
</tr>
</tbody>
</table>

Continuing Education Self-Assessment

THE IMPACT OF ENTERAL NUTRITION ON OUTCOMES IN CRITICAL CARE

7. Among the various nutrition guidelines developed by organizations for the care of critically ill patients, which of the following is considered controversial?
 a. Antioxidant supplementation in patients with acute lung injury
 b. Initiation of enteral feeding within 24 to 48 hours of arrival to the ICU
 c. The use of probiotic supplementation in critically ill patients

8. According to a meta-analysis, the use of omega-3 fatty acids with borage oils and antioxidants in patients with acute respiratory distress syndrome resulted in increased ICU-free days and ventilator-free days, but did not improve mortality outcomes.
 a. True
 b. False

Complete the post-test at www.sccm.org/CongressReview08.